

Produkt og Procesmodeller (PPM) i byggeriet. Product and Process models in Construction.

2. BIM tools and Parametric Modeling. Interoperability.

Cand. Scient. Bygningsinformatik. Semester 1, 2010.

CONTENT

- Cad software history.
- ° Object based Parametric Modelling
- BIM model generating systems.

home

CAD software history

CAD software future

free CAD software

Billig og effektiv software

- ZwCAD Alle har rad til

ing af pro

Solid Tech CAD

Inventor & ProE. East

pris, Timepris, On Site.

Ads by Google

AutoCAD 2009

rigtig CAD 2D-3D

www.aau.dk

CAD Software History

1/2

http://www.cadazz.co

CAD software - history of CAD CAM

1. CAD software history, 1960s

Euclid to SDRC...

CAD software, also referred to as Computer Aided Design software and in the past as computer aided drafting software, refers to software programs that assist engineers and designers in a wide variety of industries to design and manufacture physical products ranging from buildings, bridges, roads, aircraft, ships and cars to digital cameras, mobile phones, TVs, clothes and of course computers! CAD software is often referred to as CAD CAM software ('CAM' is the acronym for Computer Aided Machining).

While he could never have foreseen today's CAD software, no CAD software history would be complete unless it started with the mathematical Euclid of Alexandria, who, in his 350 B.C. treatise on mathematics "The Elements" expounded many of the postulates and axioms that are the foundations of the Euclidian geometry upon which today's CAD software systems are built.

It was more than 2,300 years after Euclid that the first true CAD software, a very innovative system (although of course primitive compared to today's CAD software) called "Sketchpad" was developed by Ivan Sutherland as part oh his PhD thesis at MIT in the early 1960s. Sketchpad was especially innovative CAD software because the designer interacted with the computer graphically by using a light pen to draw on the computer's monitor. It is a tribute to Ivan Sutherland's ingenuity that even in 2004, when operations which took hours on 1960s computer technology can be executed in less than a millionth of a second and touch-

pages in this section:

1. CAD software history, 1960s

2. CAD software history, 1970s

3. CAD software history, 1980-1985

4. CAD software



Figure 1. A CAD workstation as visualized by a *Fortune* magazine artist in 1956.

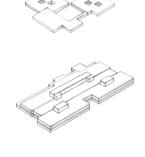
There are some CAD software history on the Web. M.Bozdoc 1955-2000 history at <u>http://mbinfo.mbdesign.net/CAD1960.htm</u> and <u>http://www.cadazz.com/</u>.

3 /20

CAD Software History

2/2

- Sketchpad (1960)
- McDonnell-Douglas (CADD released in 1966),
- Lockheed (CADAM released in 1967) Avions Marcel Dassault, purchased a source-code license of CADAM from Lockheed and in 1977 and began developing a 3D CAD software program named CATIA (IBM resell 1981)
- Computervision 1969
- Bezier (at Renault) late 1960 research
- 1972 first 3D solid modelling system (Synthavision from MAGI)
- Low cost workstations. Apollo Computer started the trend in 1980, then Sun Microsystems in 1981 and Silicon Graphics in 1982. VAX minicomputers from DEC very popular.
- 1981 IBM PC. 1982 AutoCad
- 1984 Bentley was founded and released MicroStation, a PC implementation of Intergraph's IGDS CAD software.
- Parametric Technology Corporation (PTC) releases 1988 a succesful parametric 3D cad modelling system Pro/ENGINEER (on Unix)
- 1995 SolidWorks (on Windows)
- 1987 Graphisoft releases Archicad on Mac (on Windows 1993)
- April 2002 Autodesk buys Revit Technology Corporation for 133 million US dollars


CAD Software History, BDS

BDS by Applied Research of Cambridge

BDS is an integrated set of computer programs which records, organises, analyses and reproduces the information associated with and generated during the design of a building.

BDS helps designers produce better buildings

BDS provides fast, detailed feedback on the performance, cost and appearance of any projected building. Alternative designs can readily be refined, revised or completely reshaped and each new version rapidly evaluated to facilitate choice of the best scheme

start on site	
ttached to desig alculations, etc. utomatically by E	time-consuming procedures gn - drawing, scheduling, - can be completed BDS as the design proceeds. documentation of the final very quickly.

BDS provides better costings From sketch design onwards, BDS measures the building automatically, giving more reliable estimates of capital commitment and costs in 1150

CELEVA-	2011 MPTH 1100	ITTE NF STRN 0.00				
27+3+			10 1	ss 1	.6.74 ×	
2714112	CLATER PARTITION 7,AM RISE-LOW CI	UNIT-IN BRILK-R.6				
28121102	Internet and a	AME-8600+L8-50L30		3	,000.19	
					.000 1	
25:2:972	D.TERAPL BOOK PR	AME-41500-LK-10400 11110N-87400-FL65110			1,000 12	
26:2:197		AME-41808-5 5916C-			1,000 15	
	.SHE REFE-SPLID					
22 - 2 - 112	1N PARTITIPA-824	00-PLASTIC 488-91808-5 1818C+		1	.000 10	
1111111	2K I BOISTION-82	400-PLASTIC		1	.000 H	
					. 010 V	
14243(10		19.44		1.773		
			942.40 H3	\$27.00	2.9	
1+10111		APPEN FLOORS	511.04 m2	1011-00	12.5	
15545510		\$300 Marrie 10	311.16.12	10825-18	24.0	
141410.11	1.6					
101020-10	1.4	45.40 Sunn Bris	171.71.82	11508.42	24.5	
14442010	1.0	55.00 Mine *	66,69 .82	\$514.08	5.0	
			A52.98 K2	13141-31	41.0	
10.6973-018	1.6	PLOSE FIRISHES	195,74 82	1800.90	4.0	
1000011	× 1					
16442124	1.	8,00 MEA M/105 FINTURES AND FITTERES	311/04 #2	5414135	4.0	

BDS makes coordination of the design process easy

Drawings, schedules and information produced by BDS automatically incorporate all design decisions made to date by all members of the design team. BDS also checks for incompatible decisions in particular spatial clashing of elements. The resulting consistency of documentation can prevent expensive mistakes.

BDS produces highest quality

BDS gives fast access to relevant building information

BDS is extensible and can be tailored to your needs

Greater productivity for the designer

More reliable instructions to the contractors

of building information. **BDS** means:

Better estimates all round

A better building for the client

drawings

design team.

Building Design System (BDS), Appied Reserch of Cambridge. (1978-). ARC formed 1970

CAD Sweden 1982

4. NULAGET				
4.1 CAD-installationer.				
Nedan är flertalet av de i räknade (sammanställninge 1982).				
ABV N Riksbyggen	Medusa Medusa GDS	Prime Prime	nämnas	
samt följande serviceby mjukvara (ytterliggare är	råer som att vänta)	erbjuder	tillgång	till CAD-
-UMDAC, Umeå datacentral (med filial i Luleå)	CD2000	CDC		
	CD2000	CDC		
-IUC, Industriellt utveck- lingscentrum, Skellefteå		Prime		
-LDC, Lunds Datacentral	Medusa	VAX		

Cad installations in Sweden from Christiansson P et.al., 19xx, "Datorstödd projekering. CAD i tillämpning". G13:1983. Byggforskningsrådet, Sverige (59 pp.)

Konsultbranschen och CAD-utvecklingen

Företag	Antal anställda	CAD-syster	em/dator/kapacitet		Antal installerade arbetsstationer (okt82)
VBB	1300	Intergraph (USA)	DEC PDP 11/70 primärminne 1 Mb yttre minne 2 × 300 Mb		5 st ytterligare 3 är beställda
Utrustningen används främst (hittil) utbildat personal och använt CAD-s rustningen kommunicerar med dato	ystemet i egni	a uppdrag. Aven	Theorells har uti	bildat personal. I	Den senast installerade ut-
Tyrens FFNS (arkitekt) Samarbetar via NordCAD	325 250	GDS (England)	Prime 550 1,5 Mb 380 Mb	Prime 750 1 Mb 380 Mb	4
En station är för produktion installe CAD. Tyréns har halt systemet i pro	erad hos varde duktion i ett le	ra Tyrens och Fi mtontal uppdrag	FNS och två, dei varav 3 å 4 tillsa	lvis för utbildnin ammans med FF	g och utveckling hos Nord NS.
Tekn. dr. Arne Johnson Ingenjörsbyrå	120	Medusa (England)	Prime 850 2 Mb 2 × 300 Mb		3
Företaget är ett av de hårdast sats med entreprenadföretagen SCG och	ande. Företage h SIAB vid utve	et har utbildat pe eckling av Medus	rsonal från arkite a-system hos de	ektlirman Höjer- ossa.	Ljungqvist och samarbetar
J & W	950	Berit II	DEC Vax 11. 1 Mb 3 × 174 Mb	/780	3
J&W var på 70-talet pionjär med "rit: Med detta som bas har J&W utveckl	systemet" Beri at det interakt	it (I), som företag iva systemet Ben	et tillsammans n it II.	ned HSB utveckl	ade från ett franskt system
DAPAB Elpagruppen H Hedlund & Co INPROJ KLT Konsult Rejlers Ing. Byrå Wahlinggruppen	1200	Medusa (England)	Prime 750 2 Mb 380 Mb		6
En strategisk och kraftfull satsning att på allvar beakta konstruktörers utbildning och programutveckling sa	och arkitekte	ers samarbete m	ed installations	sidan. DAPAB s	svarar för ägarföretagens
White Arkitekter	250	Rucaps (England)	Prime 250/2 0,5 Mb 80 Mb		2
Hittills enda göteborgslöretaget sor	n satsat på CA	D. Systemet har	använts i 3—4 s	venska uppdrag.	
Viak	750	DIGIKART (egen utv.)	HP 1000 0,5 Mb 85 Mb		5 varav 1 kopplad till stereo- instrument
Viaks egen utveckling började för o system för ytterligare två specialom	a 5 år sedan. råden på gång	ldag har man i p	produktion ett in	teraktivt system	för kartframställning och
Allmänna Ingenjörsbyrån	500	Computer- vision (USA)	CGP 200X 0,5 Mb 2 × 80 Mb		2
AIB har en arbetsstation med färg utbildning, varvid idag prioriteras m	skärm för ele ekaniksektorn.	ktronikutveckling Utveckling på m	g (produktion). N ark- och konstru	Vid den andra si ktionsområdet fo	ker systemutveckling och öljer senare.
	1	Egen		1	1

CAD USA 1982

ARCH:MODEL

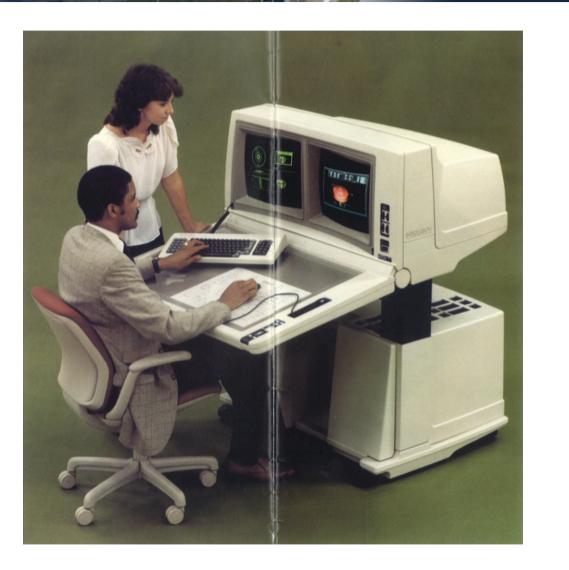
Version 1.3

GEOMETRIC MODELING RELATIONAL DATABASE SYSTEM

"The geometric modeling realtional database system ARCH:MODEL is presented as an operating system: it has a command monitor, editors, specialized analysis subsystems, and a large library of FORTRAN callable subroutines."

"The ARCH-MODEL system is a generalized software environment in which a variety of context dependent models can be built." Harold J. Borkin, Project Director John F. McIntosh, Relational Database Patricia G. McIntosh, Geometric Modeling James A. Turner, Geometric Operations

Architectural Research Laboratory College of Architecture and Urban Planning The University of Michigan Ann Arbor, Michigan 48109


(151 pages)

www.aau.dk

CAD USA 1982

"Intergraph Corporation manufactures interactive computer graphics systems to meet the needs of a broad spectrum of engineering and mapping applications. Since its founding in Huntsville, Alabama, in 1969, Intergraph has has proress rapidly to become one ogf he leading suppliers of turnkey systems"

www.aau.dk

MEDUSA

www.aau.dk

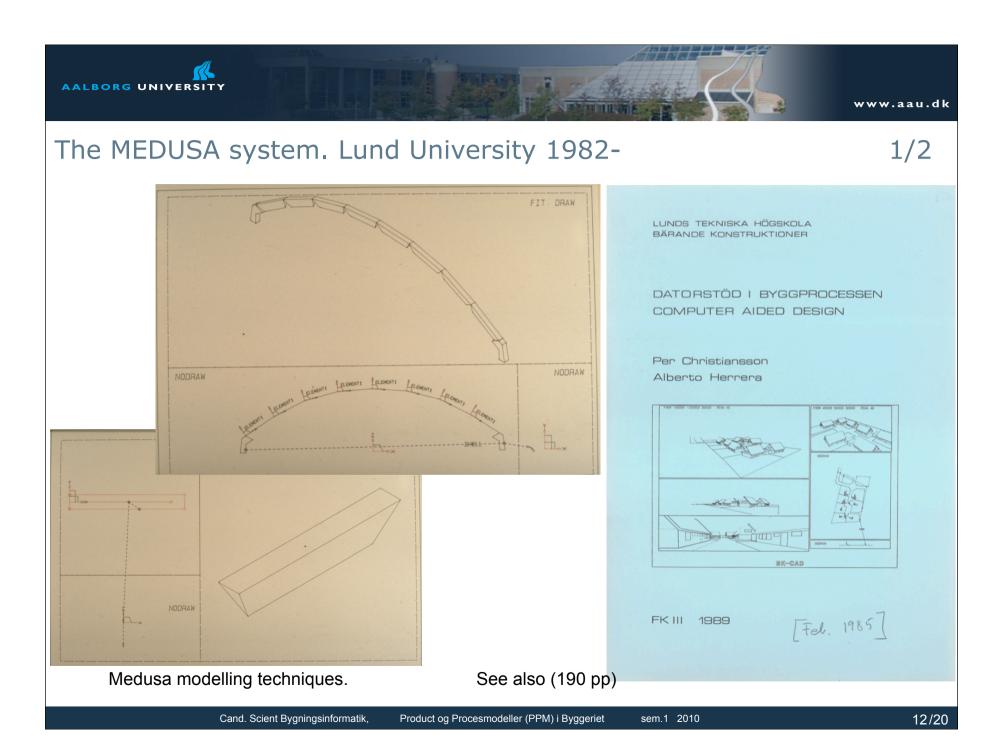
The MEDUSA system

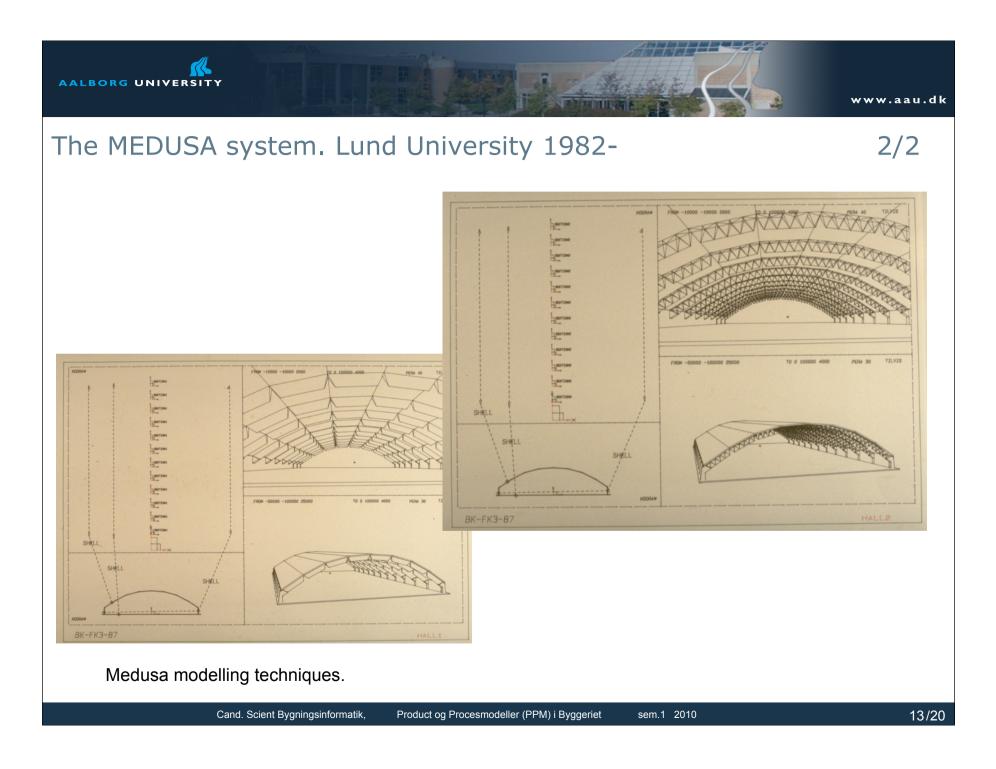
Cambridge Interactive System (CIS) 1977-1980. Partner with Prime Computer, USA, 1980. Computervision bought CIS in 1983. Two versions after that (1) CIS MEDUSA on Prime and Vax computers) and (2) Prime Medusa (on Prime computers). See also <u>http://</u> en.wikipedia.org/wiki/

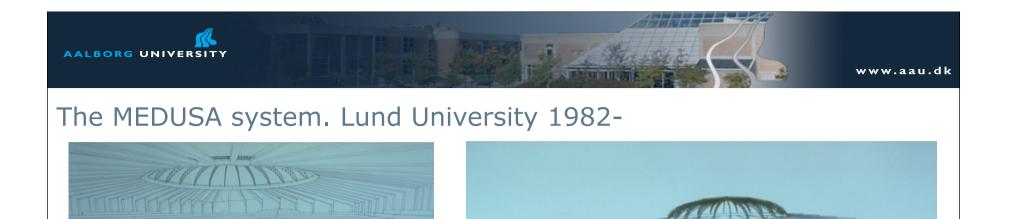
När vi har utformat arbetsplatsen har vi tagit stor hänsyn till såväl ergonomiska frågor som till operatörens bekvämlighet.

MEDUSA styrs med sk menyteknik vilket erfarenhetsmässigt är det smidigaste och säkraste sättet att arbeta på. Instruktionsmenyn har en unik färgkodning som är mycket lätt att lära sig, Bildskärmen har hög upplösning vilket bidrar till tydlighet och mindre ansträngning för synen, vilket är viktigt. När vi har utvecklat Medusa har vi noga sett till att systemet inte lägger onödiga begränsningar på användarens sätt att arbeta. Kommunikationen med systemet är logiskt och enkel att förstå. Detta har också visat sig i praktiken då operatörerna redan efter några få dagars utbildning har kunnat utnyttja systemets alla möjligheter utan några som helst problem.

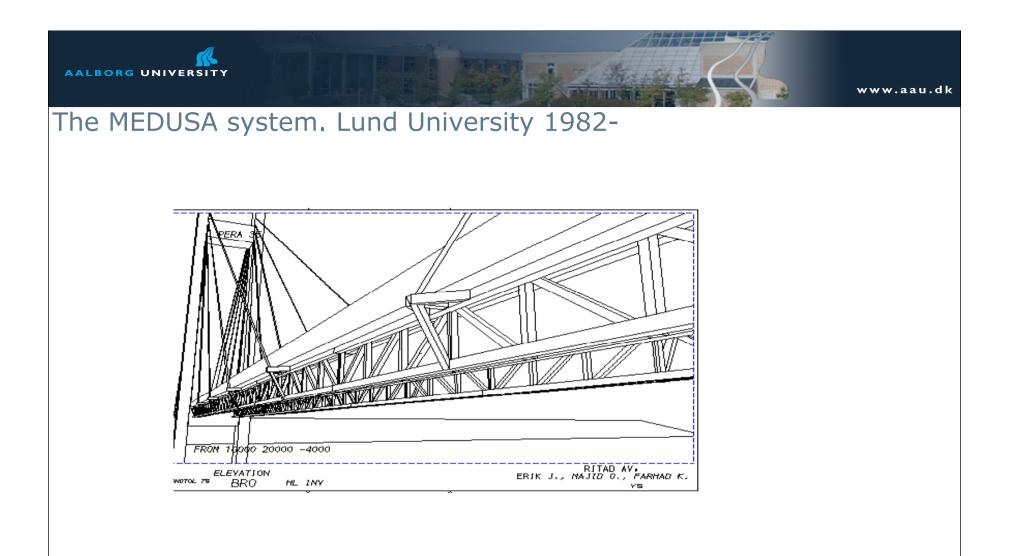
I utrustningen ingår en separat textskärm för hjälptexter, frågor mm. Ett separat digitaliseringsbord för ritningsinmatning kan också erhållas. Det är enkelt att hantera olika menyer liksom det är enkelt att hatt vid behov skapa nya.

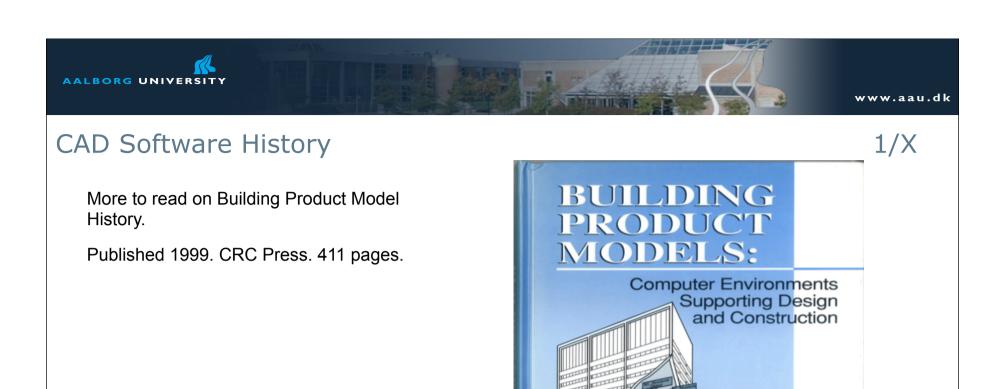



CAD Software History


1/X

Cad WS 1982. Lund University





Student works 1986 KBS-Media Lab, Lund University

Cand. Scient Bygningsinformatik, Product og Procesmodeller (PPM) i Byggeriet sem.1 2010

Student works 1987 KBS-Media Lab, Lund University

CHARLES M. EASTMAN

From the BIM handbook

www.aau.dk 1/3

р.29 -

- 2.1.2 Object-Based Parametric Modeling (in the 80s)
- p.33 (2.1.3 Parametric Modeling of Buildings)
 - "Conceptually, building information modeling (BIM) tools are object-based parametric models with a predefined set of object families, each having behaviors programmed within them, as outlined above"
- p.34 Table with examples on Base Objects given for in ArchiCad, Bentley Architecture, Revit Building, and Digital Project (Gehry Technologies based on CATIA). [wall, column, door, window, slab,....]

p.35

"One functional aspect of BIM design tools that is different from those in other industries is their need to explicitly represent the space enclosed by building elements"

- 2.1.4 User-Defined Parametric Objects
- .. "predefined objects that come with a BIM design tool capture design conventions rather than expertise"

p.43

2.1.6 Object-Based CAD Systems

"ADT also supports custom-defined extrusions and other B-rep shapes but does not support user defined interactions among object instances" ("Several CAD-systems in use today are not general purpose parametric modelling-based BIM tool...")

From the BIM handbook

1/3

p.44

2.2 Varied Capabilities of parametric modelers

"The range of rules that can be embedded in a parametric graph determines the generality of the system. Parametric object families are defined using parameters involving distances, angles, and rules, such as *attached to*, *parallel to*, an *distance from*. Most allow 'if-then' conditions."

p.46

2.2.1 Topological structure

"Topology and connections are critical aspects of a BIM tool that specify what kinds of relations can be defined in rules".

2.2.2 Property and Attribute Handling

p.48

2.2.3 Drawing Generation

A drawing is much more than an orthographic projection

p.50

"Current top-level drawing functionality supports bi-directional editing between drawings and models".

1/3

From the BIM handbook

p.55

- 2.3.1 Discriminating capabilities
- User Interface
- Drawing Generation
- Ease of Developing Custom Parametric Objects
- Scalability
- Interoperability
- Extensibility (scripting support, APIs)
 Complex Curved Surface Modeling
- Multi-user Environment
- (We add here Property and Attribute handling)

p.57

- 2.3.2 BIM Tools for Architectural Design
- Revit
- Bentley Systems
- ArchiCad
- Digital Project
- (AuoCad-based Applications) (not parametric modelers)
- Tekla Structures
- (DProfiler)

